Runx2-I Isoform Contributes to Fetal Bone Formation Even in the Absence of Specific N-Terminal Amino Acids

نویسندگان

  • Hideaki Okura
  • Shintaro Sato
  • Sari Kishikawa
  • Satoshi Kaneto
  • Tomoki Nakashima
  • Nobuaki Yoshida
  • Hiroshi Takayanagi
  • Hiroshi Kiyono
  • Gary Stein
چکیده

The Runt-related transcription factor 2 (Runx2) gene encodes the transcription factor Runx2, which is the master regulator of osteoblast development; insufficiency of this protein causes disorders of bone development such as cleidocranial dysplasia. Runx2 has two isoforms, Runx2-II and Runx2-I, and production of each isoform is controlled by a unique promoter: a distal promoter (P1) and a proximal promoter (P2), respectively. Although several studies have focused on differences and similarities between the two Runx2 isoforms, their individual roles in bone formation have not yet been determined conclusively, partly because a Runx2-I-targeted mouse model is not available. In this study, we established a novel Runx2-manipulated mouse model in which the first ATG of Runx2-I was replaced with TGA (a stop codon), and a neomycin-resistant gene (neo) cassette was inserted at the first intron of Runx2-I. Homozygous Runx2-Ineo/neo mice showed severely reduced expression of Runx2-I, whereas Runx2-II expression was largely retained. Runx2-Ineo/neo mice showed neonatal lethality, and in these mice, intramembranous ossification was more severely defective than endochondral ossification, presumably because of the greater involvement of Runx2-I, compared with that of Runx2-II in intramembranous ossification. Interestingly, the depletion of neo rescued the above-described phenotypes, indicating that the isoform-specific N-terminal region of Runx2-I is not functionally essential for bone development. Taken together, our results provide a novel clue leading to a better understanding of the roles of Runx2 isoforms in osteoblast development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A specific targeting signal directs Runx2/Cbfa1 to subnuclear domains and contributes to transactivation of the osteocalcin gene.

Key components of DNA replication and the basal transcriptional machinery as well as several tissue-specific transcription factors are compartmentalized in specialized nuclear domains. In the present study, we show that determinants of subnuclear targeting of the bone-related Runx2/Cbfa1 protein reside in the C-terminus. With a panel of C-terminal mutations, we further demonstrate that targetin...

متن کامل

Differential regulation of the two principal Runx2/Cbfa1 n-terminal isoforms in response to bone morphogenetic protein-2 during development of the osteoblast phenotype.

Cbfa1/Runx2 is a transcription factor essential for bone formation and osteoblast differentiation. Two major N-terminal isoforms of Cbfa1, designated type I/p56 (PEBP2aA1, starting with the sequence MRIPV) and type II/p57 (til-1, starting with the sequence MASNS), each regulated by distinct promoters, are known. Here, we show that the type I transcript is constitutively expressed in nonosseous ...

متن کامل

Troponin I, stunning, hypertrophy, and failure of the heart.

Two articles 1,2 in this issue of Circulation Research point to the significance of the loss of cardiac troponin I (cTnI) from the cell, the altered structure of cTnI, and the altered function and interactions of cTnI as possible key events in hypertrophy and ischemia/reperfusion injury. These studies also provide strong evidence for the hypothesis of Kusuoka and Marban,3 who first suggested th...

متن کامل

Expression of the Osteoblast Differentiation Factor RUNX2 (Cbfa1/ AML3/Pebp2 A) Is Inhibited by Tumor Necrosis

The transcription factor RUNX2 (Cbfa1/AML3/Pebp2 A) is a critical regulator of osteoblast differentiation. We investigated the effect of the inflammatory cytokine tumor necrosis factor (TNF) on the expression of RUNX2 because TNF is known to inhibit differentiation of osteoblasts from pluripotent progenitor cells. TNF treatment of fetal calvaria precursor cells or MC3T3-E1 clonal pre-osteoblast...

متن کامل

Oct-1 counteracts autoinhibition of Runx2 DNA binding to form a novel Runx2/Oct-1 complex on the promoter of the mammary gland-specific gene beta-casein.

The transcription factor Runx2 is essential for the expression of a number of bone-specific genes and is primarily considered a master regulator of bone development. Runx2 is also expressed in mammary epithelial cells, but its role in the mammary gland has not been established. Here we show that Runx2 forms a novel complex with the ubiquitous transcription factor Oct-1 to regulate the expressio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014